Object focused q-learning for autonomous agents
نویسندگان
چکیده
We present Object Focused Q-learning (OF-Q), a novel reinforcement learning algorithm that can offer exponential speed-ups over classic Q-learning on domains composed of independent objects. An OF-Q agent treats the state space as a collection of objects organized into different object classes. Our key contribution is a control policy that uses non-optimal Q-functions to estimate the risk of ignoring parts of the state space. We compare our algorithm to traditional Q-learning and previous arbitration algorithms in two domains, including a version of Space Invaders.
منابع مشابه
Reinforcement Learning for a New Piano Mover’s Problem
We attempt to achieve corporative behavior of autonomous decentralized agents constructed via Q-Learning, which is a type of reinforcement learning. As such, in the present paper, we examine the piano mover’s problem. We propose a multi-agent architecture that has a training agent, learning agents and intermediate agent. Learning agents are heterogeneous and can communicate with each other. The...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملThe Hidden Object Searching Method for Distributed Autonomous Robotic Systems
In this paper, we present the strategy of object search for distributed autonomous robotic systems (DARS). The DARS are the systems that consist of multiple autonomous robotic agents to whom required functions are distributed. For instance, the agents should recognize their surrounding at where they are located and generate some rules to act upon by themselves. In this paper, we introduce the s...
متن کاملEmotion-Based Learning of Intrinsically Motivated Autonomous Agents living in a Social World
This paper presents the performance of autonomous agents living in a role-playing game, where social interaction is allowed. These agents are controlled by an emotion-based architecture where the control architecture has a motivational model, which performs homeostatic control of the internal state of the agent. The agents learn the behaviour selection using reinforcement learning algorithms wh...
متن کامل